Mit der richtigen Software-Kombination lassen sich Maschineneinfahrzeiten reduzieren.
Foto: Inneo

Simulation

Software für kürzere Maschineneinfahrzeiten

Durch lange Einfahrprozesse werden Maschine, Material und Mensch blockiert. Ein Kooperationsprojekt will das mit IoT-Plattform und KI-Software verhindern.

Um das Einfahren von Umformmaschinen zu beschleunigen, hat sich um die Hochschule Aalen ein Team zusammengefunden und Know-How sowie Softwarewerkzeuge zusammengetragen. Zum Einsatz kommen hierbei die IoT-Plattform Thing Worx (PTC), eingebracht durch die Firma Inneo Solutions in Ellwangen, sowie entsprechende Simulationssoftware LS-Dyna und KI-Software von Mathlab, die von der Hochschule Aalen unter Leitung von Dr. Wolfgang Rimkus, Julius Schlosser und Dr. Sebastian Feldmann in das Prozessmodell eingebunden werden.

Hintergrund

Das Einfahren von Umformmaschinen ist häufig ein langwieriger und kostenintensiver Prozess. Die Maschinen werden dann oft stunden- oder sogar tagelang durch „Experimentieren“ und „Ausprobieren“ unterschiedlicher Prozessparameter blockiert. Der dabei generierte Ausschuss, die sogenannten Fehlerteile, erhöht zusätzlich zu den Maschinenstunden die anfallenden Kosten.

Maschine-Learning in der Umformung

Ziel des Projektes ist es daher, mittels Maschine-Learning die Daten aus der realen Fertigung, in diesem Fall der Umformung, mittels Bilderkennung und der Korrelation der verwendeten Fertigungsparameter, auszuwerten. Die Daten werden mithilfe eines smarten Werkzeugs mit integrierten Sensoren (siehe Bild) erfasst. Daraus werden dann Algorithmen durch Machine-Learning generiert. Somit können entsprechende Muster, die zu Fehlerteilen führen, erkannt und als Wirkzusammenhang abgespeichert werden. Dieses Prozesswissen wird dann der virtuellen Welt für Simulationszwecke zur Verfügung gestellt.

Software für Simulation und KI

  • Die Simulationssoftware LS-Dyna führt jetzt mit den CAD-Daten von Werkzeug und Rohling und mit Hilfe des gewonnen Prozesswissens, im Minutentakt Umformsimulationen durch. Die gewonnenen Referenzdaten aus der Umformung werden hierbei für das Antrainieren der KI verwendet.
  • Durch eine angeschlossene KI-Software, werden dann diese Ergebnisse laufend ausgewertet und erkannte Muster mit aufgenommen. Die KI-Software optimiert auf dieser Basis, die zur Verfügung gestellten Fertigungsparameter und schlägt für die reale Fertigung Prozessparameter vor, die dann das Einfahren der Maschine auf ein Minimum reduziert.
  • Die hierdurch erzielbaren Einsparpotenziale sind erheblich und können der Industrie einen deutlichen Vorsprung in Bezug auf Fertigungszeiten und Fertigungskosten generieren.

Das Projektvorhaben „Echtzeitdatenerfassung und Parameterkorrektur mittels einer mit Simulationsdaten angelernten KI („Sim-KI“)“ wird durch das Ministerium für Wirtschaft, Arbeit und Wohnungsbau Baden-Württemberg im Rahmen des Innovationswettbewerbs „KI für KMU“ gefördert.