Image
Foto: Jacob Müller

Automatisierung

Patent für ein neues nachgiebiges Robotergelenk

Für ein nachgiebiges Robotergelenk wurde jetzt das Patent erteilt. Die Erfindung von der TU Chemnitz soll die Mensch-Roboter-Interaktion sicherer machen.

Für ein sogenanntes nachgiebiges Gelenk erteilte das Deutsche Patentamt am 23. Juli 2020 dem Doktorand Hongxi Zhu und der Professorin Ulrike Thomas, Leiterin der Professur Robotik und Mensch-Technik-Interaktion sowie stellvertretende Sprecherin des Sonderforschungsbereichs Hybrid Societies an der TU Chemnitz, ein neues Patent auf dem Gebiet innovativer Robotergelenke.

Zweites Patent dieser Art

Die Erfindung eignet sich für eine sichere Interaktion zwischen Mensch und Roboter. In Deutschland gibt es auf dem Gebiet genau zwei Patente. Ein etwas älteres Patent, angemeldet durch das Deutsche Zentrum für Luft-und Raumfahrt und dieses neue Gelenk, angemeldet durch die TU Chemnitz. Eine Lizensierung dieses Patents steht kurz bevor.

Das nachgiebige Robotergelenk reduziert die Verletzungsgefahr

Seit 2016 tüfteln dieErfinder an diesem neuen Robotergelenk. Bisherige Gelenke wurden mit Sensoren, meistens Kraftsensoren, ausgestattet, um die Kontaktkräfte im Fall einer Kollision messen und ggf. ausweichen zu können. Andere Techniken verwenden externe optische Sensoren und überwachen so die Distanz zwischen Roboter und Mensch. Durch das neue Gelenk lässt sich dank einer Feder Energie aufnehmen. Damit kann Kollisionsenergie abfließen und der Roboter darf sich in naher Umgebung eines Menschen schneller bewegen, ohne dass dieser gefährdet wird.

Selbstständig adaptiv die Federhärte einstellen

International gibt es noch einige Gelenke, die Federn verbauen, um Kollisionsenergie zu absorbieren. Die Herausforderung liegt darin, die Federhärte nicht-linear einstellen zu können, so dass bei Arbeiten, die eine hohe Kraft erfordern, der Roboter selbstständig adaptiv die Federhärte einstellen kann, um so auch z.B. einen Nagel in eine Wand schlagen zu können. „Mit dem Gelenk ist es uns gelungen, einen sehr großen Bereich abzudecken und gleichzeitig ein kompaktes Design für das Robotergelenk zu bieten“, sagt Thomas.

Gespeicherte Energie zur Beschleunigung der Bewegung verwenden

Ein weiterer Vorteil der nachgiebigen Gelenke: Die gespeicherte Energie kann auch zur Beschleunigung der Bewegung verwendet werden, so dass ein humanoider Roboter Bälle werfen oder springen kann. Die erste Idee hatte Thomas bei Betrachtung eines Harmonic-Drive-Getriebes – ein Wellengetriebe mit hoher Übersetzung – ebenfalls eine elliptische Form auszunutzen, so dass sich ein nicht-lineares Verhalten realisieren lässt. Thomas‘ Mitarbeiter Hongxi Zhu entwickelte die ersten Ideen dann schnell zu funktionierenden Prototypen weiter.

Foto: Professur Robotik und Mensch-Technik-Interaktion
Schematische Darstellung des patentierten Robotergelenks: Die Federn sind über eine Kurvenscheibentechnik verbunden. Ein kleiner Linearmotor stellt die Federhärte des Gelenks ein. Grafik: Professur Robotik und Mensch-Technik-Interaktion

Hintergrund: Professur Robotik und Mensch-Technik-Interaktion

An der TU Chemnitz ist in den letzten fünf Jahren unter Leitung von Professorin Ulrike Thomas ein neues Robotik-Team entstanden, welches auf dem Gebiet der humanoiden Robotik, insbesondere der Perzeption und Kognition, der Mensch-Roboter-Interaktion und der Laufrobotik intensiv forscht. Dabei entwickelt die Professur neue mechatronische Systeme, wendet moderne Methoden aus der KI-Forschung an und verbessert somit die Fähigkeiten von Robotern, nicht nur in der Mensch-Roboter-Interaktion.

Roboter für den Einsatz in Pflegeinrichtungen, der Produktion oder für zu Hause

Die entwickelten Roboter sollen dabei feinfühliger greifen oder stabiler laufen und sicherer mit ihrer Umgebung interagieren können. Schließlich ist es das Ziel, geeignete robotische Helfer zu erhalten, sei es in Pflegeinrichtungen, in der Produktion oder für zu Hause. Auch in der Pandemie könnten sie einen nützlichen Dienst erweisen. Außerdem konnte die Professur mit ihren Forschungsarbeiten das Vorhaben um den Sonderforschungsbereich Hybrid Societies erheblich stärken, so dass die Initiative schließlich erfolgreich war und an der TU-Chemnitz der SFB 1410 eingerichtet werden konnte.

Image
Die International Federation of Robotics IFR hat die fünf wichtigsten Roboter-Trends für das Jahr 2022  unter die Lupe genommen.

Automatisierung

Fünf Roboter-Trends für 2022

Die International Federation of Robotics IFR hat die fünf wichtigsten Roboter-Trends für das Jahr 2022  unter die Lupe genommen.

Image

Automatisierung

B&R: Roboterintegration 4.0

Majatronic Showcase zeigt: Mapp Technology von B&R vereinfacht Funktionsintegration bei Maschinensteuerungen.

    • Automatisierung, Hard- und Software, Steuerung & Kommunikation

Automatisierung

Omron gibt fünf Tipps für die Auswahl mobiler Roboter

Industrieautomatisierungsexperte Omron auf der #hmi2019: Smarte Robotik und künstliche Intelligenz im Fokus.

    • Automatisierung, Veranstaltungen
Image
neura_robotics_cobot2021.jpeg

News

Roboter-Trends für 2021 – das sind die Top 5 

Neue Sensorik, smarte Fabriken, das Thema Umweltschutz und mehr:  Diese Top 5 Roboter-Trends erwarten uns in 2021.

    • News, Wirtschaftsmeldungen